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TECHNICAL NOTE 3868

PARTTCULAR SOLUTIONS FOR FLOWS AT MACH NUMBER 1

By Mex. A. Eeaslet and Franklyn B. Fuller

SUMMARY

The small-disturbance equation for flow at Mach number 1 is studied
with the objectlive of determining closed analytic solutions representing
possible fluid motions. Two femilies of exact solutions sppear. The
first, which represents purely supersonic flow, is, in the two-dimensional
case, the transonic equivalent of the Prandtl-Meyer expansion and leads
naturally to simple wave systems over two-dimensional surfaces. The com-
panion solution, in the case of rotational symmetry, yields a conical
field which coalesces onto the axis., A second family of subsonic solu-
tions is also calculated., 1In the case of rotational symmetry, & source-
like flow with constant mass flux in the downstream helf-plane results,

It is possible to patch these solutions together in such a way as
to simulate the flow over the rear half of an infinite body. When initial
conditions on the body dictate sonic speed, expension waves first appear
and eccelerate the motion, An ebrupt chenge to the subsonic regime is
then produced by a single shock of parabolic shape., :

INTRODUCTION

This peper presents a few exact solutions of the transonic differen-
tial equation for the perturbation potential when the free-stream Mach
number i1s 1. Such examples, as in the case of Ringleb's solution (ref. 1)
of the more general potential equation, are of some interest if only by
virtue of their rarity, and one can hope that they may provide some
insight into the possibility of introducing further simplification in
the methods used to solve the basic nonlinear eguation. The approach
used here is effectively a separation of variables technique with the
additional assumption that the perturbastion potential times some power
of leteral distance is a function of a single varieble that is related
simply to lateral and longitudinal distance. Since no boundary conditlons
are imposed, it becomes relatively easy to generate solutions and one
finds that both two-dimensional and axially symmetric flow fields can be
treated In the same manner,

The solutions yield, in all cases, elther purely supersonic or purely
subsonic flow. The method of analysis, in fact, thwarts all attempts to
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attain a mixed type of solution except for the case in which Initlally
supersonic flow is joined by means of a shock wave onto the downstream
portion of the subsonic solution. The detalls of the Joining are glven
in the final sectlon on epplications.

IMPORTANT SYMBOLS

gspeed of sound

pressure coefficilent, 2%

2
2 DoUo
coefficient—in transonic potential equation (see eq. (10))

Mach number, —
pressure
perturbation veloelty components in x,y,z directions
total veloclity component in free-stream direction
total velocity

Cartesian coordinates (if exial symmetry is present, y 1is radial
coordinate, see eg. (13))

ratio of specific heats, for air ? = L.k

maximum engle of flow deflection for attached shock wave
density

composite varieble (see eq. (15))

velocity potentlal function o

U™ %o
Subscripts

evaluated just ehead of & shock wave

evaluated just behind a shock wave
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o evaluated in the free stream
* evaluated at critical speed (M = 1)
ANATYSIS

In this section, analysis basic to the determinstion of the exact
solutions will be presented for two-dimensional and axlally symmetric
flow fields when the free-stream Mach number is 1. The derlvation of
the transonic partial differential equation is first reviewed briefly.
Particular restrictions on the structure of the fields and the free-
gtream Mach number then leed to consideration of an ordinsry differential
equation that 1s solvable analytically. The section concludes with a
discussion of the properties of the derived solutions.

Basic Equations

The flow to be studied is, by assumption, produced by slight devia-
tions in the uniform flow field created by a free stream of velocity Uo.
The uniform flow will be directed along the positive x axis of a
Cartesian coordinate system x,y,z and the perturbation veloclity com-
ponents u,v,w, parallel respectively to the three coordinate axes, are
agssumed smell relative to Ug and the speed of sound &g 1n the strean.
For transonic flow, the free-stream Mach number (Mg = Uo/ao) is near 1
and, in the derivation of the governing potential equation, the non-
linearity is retained only insofar as the streamwlse component of per-
turbation velocity affects the result. The continuity equation can thus
be approximated in the form

[ (Uo +u)p(Uo +u,0 0)]+ (vpo)+ (Wpo) =0 (1)

ax By

where p(Ub-Pu,V,W) is density expressed as a function of local velocity
and Po p(Uo,O 0) denotes free-stream conditions. The first term of
equation (l) represents the gradient of mass flow and because of the
unidimensionality is easily eveluated by means of the corresponding
momentum relatlon

a:
Eﬁ- , (2)

ol

Ug+u = -

where p is p(Up+u,0,0) and p is local pressure. Equation (2),
together with the isentroplc pressure-density relastion p/po p/p0
ylelds

)7
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where ¥ 1s the ratioc of specific heats. The mass flow is, thus, from
equation (2) » determined by

1/(y-1)
(Uo+ulp @+Q>%+ Mf[ @+ >]} (%)
Uopo
121 and it remains to evaluste its stream-
*u) wise gradient. _ .

H P
Lineor /A\ Sketeh (a) shows a plot of equa-
approximation tion (4) when Mo = 0.8. As is to be
expected, the maxlimum mass flow occurs
Y Mo=08 when the locel Mach number 1s 1., The
portion of the curve in the neighbor-
hood of this maximum is the part
presently of interest. If equation (L)
) N . - B . is approximated by an expansion
4 -3 -2 -l 0 1 2 3 4 including only terms of first order
& in u/Uo, the mass flow is repre-
sented by a straight line tangent to
Sketch (a) the curve at the point u = 0, as
shown in the sketch. Equation (1) then assumes the form associated with
linearized compressible-flow theory. A more exact approximation is sought
here, and to this end the guadratic depeéndence on u/Uo 1s retained.
The mass-flow curve is thus to be represented by a parabola of the form

B

Wotwo _ 1, (1 ye2) _E_k() (5)

Uopo

where k 1s a constant yet to be determined.

In equation (5) the ordinate and slope of the parabolic approximation
correspond to free-stream conditions but some arbltrariness remains In the
determination of k. The mogt obvious cholce would appear to dictate
higher-order contact between the two curves, and this leads to the value

Uok = Mo3[3 - (2 - 7)Mo?] (6)

A more interesting possibility follows if the vertex of the spproximating
parabola 18 fixed at M = 1, although the value of the mass flow itself
may not be exact there, This is the approach used by Oswatitsch (ref. 2)
and leads to the result
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Uok = Up {L=Mo®)

a*-Uo

(1)

where a, 18 the critical speed of sound determined by M= (Uo +u*)/a*=l.

A third possibllity for the determination of k <follows from the

known relation

8y _

Uo

1o o)
(v +1)Mq

"

(8)

If equation (7) is combined with the first-order expansion of equation (8)

near Mgy = 1, one gets

Uok = (7 + 1)Mo?

(9)

When equstion (5) is used, together with equation (1), and a pertur-
bation velocity potential o(x,y,z) is introduced, the transonic differ-

ential equation takes the form

Oax(L = Mo® - kdy) + gy +0zz = O

where k is given by equation (6), (7}, or (9}.

Sketch (b) shows a comparison, at Mg = 1.2,

(10)

of the three parsbolas

Exact ’ ';038-
Eq. (4) d otU
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described above, as well as the more exact curve for mess flow given by the
isentropic relation of equation (4). The differences bebween the curves
are of the same order of magnitude as those of terms neglected in tran-
sonic theory and the final choice must be baséd on additionel considera-
tions., The form of k in equation (9) wae proposed originally by Spreiter
in reference 3, and its superiority in correlating experimental data by
means of the transonic similerity rules was clearly establisghed at that
time. TIts use will be adopted here for this reason and also because, as
gshown in the following paragreph, 1t appears as the most natural form to
relete the transonic shock-polar and mass~flow relations.

Equation (10) spplies to transonic flow in regions for which the
flow experiences no discontinuitles and the gradients of velocity in the
equation are finite. Transition through & shoék wave is governed by &
finite~difference relation between the components of perturbation velocity
(vg,vg,Wg) @head of the shock wave and the components (w,,vy,w,) behind
the shock wave. As glven in reference 3 this equation is the transonic
shock polar o o -

(1 - M) (g = vg) 2+ (v = 7) 2+ (g = ¥0)® = w2 2+ 1) (“a"”“b)(ua-ub)a
¥ Uo 2
= k(%'u??)(ua'ub)a (11)

where %k 1in the final term is as defined in equation (9). Consider s
normal shock wave in the flow with velocity Uy ahead and Ug+uyp
behind. Since the mass flow is continuous through the shock wave and
gince in transonic theory the contlnuocus portion of the flow is repre-
gented alweys as a potential field with uwniform stream conditioms, it
follows that when wug,Vg,v, Vvanish, the value of wu, downstresm of
the shock must correspond to unity on the mass-flow parabola, In
sketch (b), unit mass flow is represented by & horizontal line through
u = 0, The intersection of the line and the parsbola corresponding to
the k of equation .(9) is at :

Y _ o (1- M%)
Uo (y+ )Mo

and this agrees with the value of 1w, ‘given by equation (11). This
result can, in fact, be generalized easily to show that for sny normal
ghock the disconbtinulty predicted by the shock poler agrees with the
discontinuity given by eguation (5) when ‘the mags flow is held fixed.



NACA TN 3868 7

A comparison between the tran- Mo=l.1 06+
sonic shock polar of equation (11)  —Exoct " ) -
and the exact polar is shown in paad = U e g
sketch (c) for the case Mg = L.1. . -~
The inner curves apply to shock
discontinuities for which free- [/ / el
streem conditions hold on the !
upstreem face; the two polars are I
thus applicable, in particular, to !
bow waves in a supersonic free 20 e -2
stream, It 1s theoretically pos- _‘3.
gible to treat shocks at positions °
for which the supersonic free stream Sketch (c)
has been accelerated to a higher Mach
number assoclated with the longitudinal perturbation velocity ug. The
outer curves of the sketch are drawn for the case Mg=1.l and us/Uo= 0.0k,
It is obvious that ug/Uy must, in general, be képt very small if the
shock analysis is to be based on free-stream conditions.

08 03 0 04

From equation (11) the maximum deflection angle accommodated by the
shock wave can be shown to be

b (Me2-1)%2

Smax = 3J3 M E(y+1) (12)

where Mg is the Mach number on the upstream face of the shoek. It

is clear from an inspectlion of the curves in sketch (¢) that this result
provides excellent egreement with exact theory when Mg = Mg but becomes
less accurate &s the difference between the Mach numbers increases.

Particular Solutions When Mg =1

Subsequent application will be limited to cases where the flow field
is elther two-dimensional or has axial symmetry. The differential rela-
tion for the perturbation potential is, from equation (10),

(1 - Mo - k0, )0 + Oy + S 0 = O (13)

where ¢ = 0 for two-dimensional flow and o = 1 for axially symmetric
flow and y is a Cartesian coordinate in the two-dimensional case and
the radial coordinate in the case of exial symmetry. When the free-
stream Mach number is 1, all values of k reduce to

ko = (7 +1)/Uo
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and by means of the transformation
® = Uop

the differential equation becomes

(Y1000 +0y, +5 By = O (k)

Following Guderley and Yoshihara (ref. %) a solution is sought of
the form -

/3 X

o= e(n) ,  (Uo)Yor = 3 (15)

If the resulting ordinary differential equation 1s to involve only =
and f(T), the condition m + 3n = 2 must apply. The perturbation velocity
components then hecome

vy = amam (7 (262)
= - _(_?_—_3_11_) —_—1 Pt
sy Jo(an) [f('r)+ oo L (_T)] (16b)

The ordinery differentiel equetion for £(T) can now be written as
£1E" = [3(1-1n) - 0](2- 3n)f +[5n(1 - n) -~ ng] TE! + n2T2L" (178)

This 1s & homogeneous differential equation, of degree of homogeneity 3,
go 1ts order may be reduced by unity (see ref. 5, par. 55). An alternate
approach is possible, however, since the parémeter n 1is yet to be fixed.
Rewrite equetion (17a) as

[21(n)1% = 52 & (s22)al5n(1-n) - o~ on] 2 (v2) +

14
2 dar
[2(1-0)(3-7n) +20% +20(2n - 1) £ (17v)

A Pirst integral of this equation can be written immedlately if n 1s
chosen 80 as to meke the coefficient of f vanish, Solutlon of the
resulting quadretic equation in n yilelds the roots
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_ 1 - g
n=l, 330

For the two-dimensional case, this results in two possible values for n,
namely 1/2 and 3/#; but for the axisymmetric case, where ¢ = 1, the
roots coalesce &t n = 1/2. The first integral of equation (1Tb) is

£12 = op2 (-1@; (v2£) + 20(5 - 9n - o) 7F + const

In order to deal with situations in which the flow is undisturbed
for x < 0, the condition that the streamwise perturbation velocity com-
ponent @, venish at x = O will be applied. From eguation (162), this
implies that f£'(0) = O also and the value of the constant in the last
equation becomes zero. The resulting form for the first integral of
equation (17a) is therefore

ft2 . on2t2ft - on(5-Tn-o)7f = O (18)

It will be noted that equation (18) is again homogeneous, and thus can
be integrated. It remains then to consider separately the three possible
cases (6 = 03 n = 1/2, 3/h and 0 = 1; n = 1/2) and to examine the form
and properties of the relevant solutions of equation (18).

Properties of the Particular Solutions

Two-dimensional case, n = 1/2.- Setting o = 0, n = 1/2 in equa~-
tion (18), one needs to solve the equation

OFt2 . g2ft - 37 = O (19)

end this is readily carried out by means of the substitution given in
reference 5. First, however, conslder the equation written in the form

£1 = % T2 & J-r4+2ln-f> (20)

It can be seen that #£(7) must be an odd function of T, positive when T
ig positive. The ambiguity of sign then leads to two possibilities: if
the upper sign is chosen, ' > 0, and the choice of the lower sign leads
to £' < 0. By reference to eguation (16a), it follows that these pos-
gibilities lead respectively to the conclusion that Py > 0 or o, < o,

hence to purely supersonic or purely subsonic perturbation flelds, since
the stream velocity is sonic. These possibilities will be distinguished
with resgpect to £ by designating them respectively as £; and fs.
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The solutions of eguation (19) are expressible in the forms

£.(7) = 1 73+—:-E—1°2/3 (73+21¥f1)uz+3'r3/2 (21a)
/s i/s
3 2(3) [(T3+21+f3_) Ve, 73/2]
ay olr Y2, pa/2 :
fa(7) = 2hfpe® (ro+ 24a) "7 (21b)

[( 134 2he) Y 2 4 3 2]3

where the additional subscript o means that the function in question is
evaluated at T = 0. A particularly interesting soclution of supersonic
type results when £ = O, namely o

£.(7) = % 3 (22)

Physical aspects of the flow fleld determined by this solubtion will be
considered later. Supersonic-type solutions given by equation (2la) that
do not have the property fi10 = O will not be considered further here.

It is apparent, however, that they behave asymptotically like (1/3)r2 3
the solution to be used, :

Consider, next, the solution (21b) which is of subsonic type, fp' < O.
The formulation, as given, 1s lmplicit but it 1s not difficult to com-
pute the course of fo(T) because of the following relation, a consequence
of the homogeneity. Let 6 = 24fy(7)/73; then equation (21b) can be
written

\0 = £ 02 376 _(1+ 0)* 2 411
8 ( 1/e 3
. 1+8) “+3
(23)
8 g0 that if values of 6 are asslgned,
T may be computed and hence fy, since
4
) 730
b (1‘) o
= 2k
2
Sketeh (d) shows the behavior of
. L fo(7) for the initial value fpo = L.
06 8 6 24 2 48 Because of the homogeneity of £(7)

Sketch (d)
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in T, it is only necessary to compute - f5(7) for one initial value fogoj
other cases then follow from the transformastions T=cT¥, fo{7)=c3fo%(T*),

For later analysis, it is convenient to have simple expressions for
the behavior of fa( T) for small and for large values of- the argument T,
Such expressions are readlly calculated by use of the defining equa-
tion (19). The required formule for small and large T are, respectively,

i/a
f2('r) zf20—<§ fo0 T3J2+-,:i- 3 - 2'1 = 2l2, .
72(% f2€>
. (2ka)
1
fa(T) ~ %_ fao® ':}5"]2_—.67' foot T .o (2kp)

Pwo-dimensional case, n = 3/ll.- The function f£(T) is now replaced

by g(7) in order to distinguish the present functions from those for
n = 1/2. The defining equation 1s

8g'Z- 912g' +37g = O (25a)

Solving for g', it follows that
g == [972s (87 96va) V2] (250)

Thus g(T) must be negative, or such that

The solutlons associated with the two signs in equation (25b) will again
be distinguished by the subscripts 1 and 2, corresponding to the positive
and negative signs, respectively. These solutions are

8)1/7 (8113 - 96gl'r)l/2+71'3/2 (268)
i/ / 2 &/
(8173 967g) Y 2+ 97° ]

gi(1) = % 73 - (96810

go(1) =~ <3208>l/9 (8173 - 967g,) Y2y gral2, (26b)
% [(811-3- 967g,) Ya. 7'1'3/ 2]7/ °
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1o 20 T 30 a0 50 Tt is of interest to remerk
v ' that the supersonic-type solution
K/T/ for which g,, = O coincides with

' that found in the previous case,

N | 92(7) The solution of subsonlc type is

shown in sketch (e); it does not
vanish for large T as aid £(T1)
-8} but, in fact, grows as T/ 3,
Approximate formulas for smell and
large T are agein easy to find,

12} belng
-6k 92(7)
-20t
-o4L
2 Sketeh (e)
_ /2 - .
ga(T) ® goo- ( g620> 73/2+—1&% RAER (27e)
8208 / _3_ €20° =/
- /3.

Axisymmetric case.~ For this case the functional symbol F(r) is
used to replace £(T). The defining differential equation is

OF12 _ 42F1 < 7F = O (28)
which can be rewritten as

Ft = = [122 (44 87F) Y 2] (29)

i
L

Solutions of equation (29) are

/s _
Fao7) = — TS+ 2 (Fm )l ) (Ts+8F1)l/2+5T3/2 (30a)
1 3 e 3/s
[(ro48F,) Y2 4 15/2]
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1/2
/s (v3 +8Fp) " % 4 13/2
+) 573 (30b)

Fa(T) = 6(9F
: = [3(734-8F2)1/2+ 573’2] :

Once again a simple, supersonic- 1.2
type solution results when ¥Fio = O, r

Fy = g 73 (31) 8

The subsonic solution can be calcu- <
lated by the same device used pre-
viously and has the form shown in
sketch (f). Expansions for small as O

well as large values of T are 0 2 4 r S 8 10
Sketch (f)
2 (F20)'* 0/2, 5 1o 5 (2 )%/
P et ={} /2 3 . - 2 . .
Fo(T) & Foq 3 < 2) 3 +36 T <F20> T9/2 ., (32a)
Fo(T) ~ g (9ano4)l/:3 %‘% (3F208)1/3 ;;12—4' o e . (32p)

The formal similarity between the two- and three-dimensional cases
is particularly striking for the simple, supersonic-type solutions since
they differ only in the magnitude of the coefficient of T3, It will be
seen in the next section, however, that the two-dimensional solution is
of more general interest since it is directly related to the study of
expansion waves in transonic flow.

SPECTAT. APPLTCATIONS

In this section streamlines and pressures associated with the derived
golutions will be studied in some detail., In all cases the flow in the
negative half-plane (x < 0) will be assumed uniform with parallel gtream-
lines., The disturbance fields then produce deviations in slope of the
streamlines in the positive half-plene (x > 0) end the flow can thus be
identified with modifications in shape on the rear of s gemi-infinite
cylinder or eirfoil.
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Two-Dimensional Flow

Supersonic~type solution.- Consider first the supersonic solution
determined by tThe function £i(T) glven in equation (22): £.{(7) = v3/3.
As mentioned previously, this solutlon holds when £35 = 0, for either

= 1/2 or n = 3/4. According to equations (15) and ?16), the perturba-
tion potential and velocity components are -

1 x3 ‘ 1 x3

o) = e Ao (330)
2 3
=1 (X% =2 __ (X
oxly) = -(—”—l)(y) ey =2 () G

Consistent with the aspproximations made in establishing equation (10) ’
the slope of the streamlines is glven by -~ 7~

dy _

and, after integration, this yields

Y4+§T'}7g:]—-)- x4 = ot (35)

where y, is the starting value of y. The flow therefore expands as

it becomes supersonic. The solution given in egquations (33) is clearly
of the sort called "simple wave” since it lies adjacent to an undisturbed
region. The characteristics of the field Bhould then consist of at least
one set of straight lines, and this is seen to be the case; for, from
equation (14) with o = O, the slopes of the families of characteristics
are

ﬂ = +1 6)
ax  [(y+L)e,l* 2 (s

end, using equation (33b),
F=xi (37)

The characteristice are then

«
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y/x = const , Xy = const (38)
and the first of these families is the required set of straight lines.

The best known simple wave solution is that of the Prandtl-Meyer
expansion and, in fact, the present solution is the transonic approxi-
mation to this exact solution, applylng for small angles of flow deflec~
tion. The accompanying sketch (g) shows a comparison of the two flows
a8 to streamlines and second-family characteristics (the first-family
characteristics are identical, being radial lines from the origin.)

Sketch (g)

The solid lines are the exact results and the dashed lines represent the
present gpproximation. Roughly speaking, agreement is good up to a fan
angle of about 45° , corregponding to a deflection, or expansion, through
sbout 6°. Another comparison that can be made is that of the pressure
coefficients in the two solutions. The exact result is (for Mgy = 1)

= .-.-( - cog’” 17\w> (39)

vwhere ¥ 1is the ratio of specific heats, A2 = (y-1)/(y+1) and

tan w = x/y so that w is the polar angle measured from the y axis.
For smell angles of deflection a, it 1s easily found that the relation
between « and w is
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2 3
AU B ————— Y
3(y +1)

If the right side of equation (39) is expanded for small values of w
and the lowest-order term retained, one gets

-2 2
%p * y+1

In terms of «, the last relation ylelds for pressure coefficlent

_ag/s(lg)lfs
MNCFESTE (40)

In the present transonic small-perturbation theory, pressure coefficlent
is T : —

2
-2 X -2
C =_% =_.._.__<—> =__.__m2
P X G+ W/ (+D
The deflection, o, of the flow is _
s )
2 X 2 3
= = wm——— = W
=y T30G+D (3’) 3(y +1)

and these last two relatlions lead directly to the spproximation for
Prandtl-Meyer flow given in equation (U40). This expression is, moreover,
in accordance at Mg = 1 with the transonic similarity rule for pressure
coefficlent as given, for exsmple,
in reference 3.

The nature of the Prandtl-Meyer
relation between pressure and loecal
flow deflection leads neturally to
application to two-dimensional expan-

" sion over a curved airfoil surface
for arbitraxry free-stream Mach numbers.
The problem resolves itself into the
determination, from a knowledge of ‘the
expangion fan for My = 1, of a rela-
tion for pressure coefficient, analo-
gous to equation (LO), for the case
in vhich a flow at a Mach number Mg
is turned through & small angle. To

x determine such a formula, one starts
with the previous solution and follows
1t until the Mach nurber in the expan-
sion becomes Mg, at some angle wo,
as shown in sketch (n). The velocity

2
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is constant all along the ray at angle wg to the y axis, and the
direction of the flow is parallel to the ray at angle ag to the x
axis. Introduce now a new potential function ¥(x,y) defined by

2
-1
- Ehﬁ 1)Mc):2c * e (k1)

¥(x,y) =

This function satisfies the transonic equation (13) for two-dimensional
flow at free-stream Mach number My, and so applies to the flow in the
present problem as it exists after turning through the angle ag. The
boundary conditions are

L wf- (Mo-1)
(y + L)MZ

Yy Wo

and since wy2 = Moz -1 In the present approximation, one has
¥y =0 a2t wg
In general, the streamwise component of perturbation velocity is

w2 - wy2

T (74 1)M2

X

The deflection angle 1s

and the initisel boundary condition yields

-2uo® _ -2(M%- 1)¥'®

11{ =
Tw=swo  3(y+1)M,°  3(y +1)Mx2

QLo =

Thus the incremental pressure coefficient attributable to the deflection
from ag to ag+a is

(Mo=-1) w2>
Cp = - =2 1-
P E’J’x (7 . l)Moz wo2

or, if the relation between w and o is used,
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2 _q ; 2 /3
Cp = 2 ——-_-—(Sflmia 1- [1+2?1iz;_l§g/2 o } (42)

Equation (42) is consistent with the transonic similarity rule for

pressure coefficient when k = (y+ l)Moz/Uo 18 the baslc transonic param-
eter, It 1s of interest to remasrk that the dame problem has been treated
by Lighthlll in his discussion of simple weve theory of airfoll flow _
(ref. 6, p. 387). His result, which was derived as & summation of series
representations for pressure coefficlent in terms of flow deflection angle,
was -

U VI PR 25 T B y
T U [l z(Moz-l)s’aa] } oW

Here, oo 18 of opposite sign than that used in equation (hL2). It is clear
that equation (43) is in a form consistent with the transonic similarity
rules based upon the value (7 +1) /Uo of the transonic parameter k.

Subsonic-type solutions.- Consider the two-dimensional solution for

the case n = 1/2. The differential equation defining the stresmlines
of the field is . :

%_}X{ = (py = -Ey%l;.é- [fa('l') +Tf2'('f)] (h‘,’l'a)

This equation must be solved numerically and for the reason of avolding
continual conversion between x, y, and T, 1t is convenlent to change the
independent varieble from x to v. This gives

ay _ g4 ey’ | (i)
dr > 4(Uoko) ™Y %y2 4+ 7(£5 + 7£2")

A plot of the quantity (fo +Tfo')
versus T 1is shown in sketch (i).
The quantity venlshes at one value
of T, say Ty, and this 1s easily
found to be at the point where
£o(T1) = 713 (by using eg. (20) for
fa' in terms of £3) or, using
equation (21b), where

0 = 20 T 30— 40 7,6 =% £o0?

Sketch (1)
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Thus, the streamlines have a stationary point at the zero of I+ 7!
and, in the x,y plane, a constant value of T becomes a parabola

22 = [(Uoko) ¥ °ra ] ¥

Sketeh (3) shows some results of integrating equation (Lkib), and
retransforming the independent varisble from T to x, as well as the parab-~
ola on which the minimum points of the streamlines lie. In addition one
can derive various other relations for the streamlines as approximations.

20

Sketech (J3)

For example, for very small values of T (or x), one can use the Ffirst
term only of the series (24a) for f£o(T), and derive the starting form
of the curves. This gives

y¥/2 = YOS/Z-% Toox

where
Yo = ¥(0)

On the other hand, to determine the asymptotlic form of the streamlines,
the first term of the series (24b) can be used together with equation (Lka).
Thus

U, 1
yw-y = i(_g;ko_). feoz.x_z
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where y, 1s the ultimaste helight of the streamline. In this particular
example, the streemlines spproach their asymptotes from below. TFinally,
for large starting values of the streamlines, y, >> 1, a control surface
method would be applicsble for the calculation, since the variation dies
out rapidly with increasing y,, and the gtreamlines are nearly straight.

Tt remains to calculate the pressure distribution along a streamllne
in the flow. The expression for pressure coefflcient is given explicitly
&s o ; : - -

Cp = -ap -————7—(U0ko)l 3 £1 (T) (’"’5)

X The results of the numerical solu-
ofp—= o 20 & 20 tion of the differential equa~
tion (44b) for the streamlines are
useful for this pressure calculation,
slnce therein y 1is known as a
funection of . Results for the
stream}ines having y, = 1, based
on the function £o(7) for which
fag = 1, are shown in sketeh (k).
It is not difflicult to determine
that near x = 0,

Lp . L
Sketeh (k) ax  x

so that the pressure gradient is infinite at the y axis, on every
gtreamline. This effect is attributable to the finite deflection angle
on each streamline at x = O,

The other two-dimensional solution: (n = 3/4) can be discussed in
much the seme way as for the preceding case (n = 1/2) The differentisl
equation for the streamlines I1s _ ' S

-2
% T g2'2(7)

Again, the independent variable can be changed from x to 7T, resulting
in _

Y =
dv

Y ga'z('r)
T 2(Ucko) M %y + g'3(7)

Uﬂ$r
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Results for numerical solution of 20

this equation, for several initisl
values of the lateral coordinsate
Yos are indicated in sketch (2). 1.6

The initial value of go(T) wes \ ———
go0 = -1. It is noticed that there \

[

J

are no statlonary points on these 1.2
streemlines, but the corner at
x = 0 persists. Pressure on the y
streamline for which y, =1 is 8
shown in sketch (m), and the singu-
larity in the pressure gradient at

x = 0 still exists. a

Combinstion of subsonic and
supersonic solutions.- It is of o ; — —
interest to consider the possibility O 10 20 30 40 50
of cambining the previous solutions
through the mechanlsm of a shock Sketeh (1)
wave. Thus, consider again the .
undisturbed sonic flow 1n the half- X
plane x < 0, and let it expand to o 2 1 1> 20 25 30
become supersonic for x > 0. If
this supersonic flow 1s followed for a4
some small distance, it can be shown
that & shock wave of determined G
strength can be gpecified in such a .8
way that the downstream field corre-
sponds to known results. Assume now Sketeh (m)
that the simple-wave, supersonic solution is to be followed by the sub-
sonic solution for the case n = 1/2. The discontinuities in the flow
muigt satisfy the two-dimensional form of the shock-wave relation given
in equation (11). Since Mg = 1, the condition cen be written in the
form

<q3ya - CPyb)a = (Ugko) ?E%;;_@_xh <q>xa- Cbe>2 (L6)

In terms of the auxiliary functions f£1(T) and £o(T), equation (L46)
becomes :

(£1 - £o+ £, - 821 )% - 2(21t + £ ) (£,! - fa')a =0

which factors to give

(£1-£2)(f1~ 781~ £+ TE3') = O
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The shock-wave relation is thus satisfied 1f
17} = far) . (47)

(The other factor cannot vanish since £, - 7£,' 1is a negative quantity
and fgp- vfa' 1is always positive.) Since equation (47) will hold for
some fixed value of T, say Tg, 1t is clear that the shock wave in the
rhysical plene must have a parabolic sghape, with the equation

2/ 3
x2 = (Uoko) Tszy ()48)
Further, it is not difficult to determine, by setting fa(T) =-7v3/3 in
equation (21b), that
1y /e
o = (% £20%) (39)

In order %o see if the condition represented by equation (47) is indeed
sufficient for the existence of a shock wave, veloclties can be calculated
on both sides of the persbola of equation (48) in directions tangent %o
and normael to the parabola. One then finds that the tangential components
are continuous across the parabola and that the normal components fulfill,
to the order of transonic small-perbturbation theory, the condition

(Vn)a (Vn)b = - m V'bz

where V, and Vy Trepresent components of the total fluid velocity normal

and tengential to the shock wave, respectively, and the subscripts a

and b refer.to condltions immediately
upstream and downstream of the shock
wave,

A final condition to be met, if
the joining of the two flow fields
by a shock wave 1s to be meaningful,
is that the shock wave be attached
to the wall. Equation (12) gives an
expression for the shock-attachment
sngle Bpgy, and sketch (n) shows a
comparison of the exact values of
dmax &8 derived from oblique-shock-
wave theory with the approximate
values given by equation (12) with
Mo = 1 as a function of the loeal
Mach number Just ahead of the shock

100! 2 ' L - L 1 L ]
(o 2 ¢ Sma 6 8 vwave, Mg. This sketch re-emphasizes

the necessity for confining the

Sketeh (n)
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gpplication of this perturbation anelysis, where shock conditions are
referred to free-stream gquantities, to very small values of the perturbed
quantities., Now, to insure that deflection angles obtained in matching
the supersonic and subsonic flow fields are admissible, It 1s necessary
to determine the angle at which streamlines of both parts intersect at
the shock wave, If A 1s the angle of inclination of a streemline, its

Slope is

The dlscontinuity across the shock wave at any point thereof is then,
making use of equation (20} and the shock condition (47),

Tss
h_ya/ 2 1 Tss

e

_ (3%2/2) (£20/y*'®) (0)
1 - (2£20%/27y°)

ta.n(?\b - 7\8_) =

Notice that the deflection decreases with the 3/2 power of distance from
the x axis. The angle determined by equation (50) is to be compared
with Bmex, using as the local Mach number in equation (12), or in

sketch (n), that attained &t the end of the supersonic portion of the
desired combined streamline, The local Mach number M 18 determined
from the transonic relation

1-M2 & 1-M,2 - (Uok)o, (51)

which approximstes the coefficient (1- M2) of Pyy 1n the exact potential
equation by the coefficient of ¢, in equation (13) (vhere Ugp = &).

The calculetion of an illustrative example is most easily carried
out by starting first with one of the subsonic streamlines already cal-
culated and matching to it, at the point of intersection with the shock
wave, & supersonic stresmline, The latter is readily determined from
the differential equation (34) when one uses as the boundary condition the
values of x,y obtained from the intersection of the wave and the
subsonic streamline,

In order not to extend the supersonic flow to angles of deflection
that exceed the range of validity of the theory, it is necessary to
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choose fp5 properly. The results of calculations for which fgo = 1/8
are shown in sketch (o)., The subsonic streamline was ‘taken as the one

Li2 :]——
1.04 \r -----
y WWWWWWWM

96t

.88}

80 A | - | ] 1 1 L L 1 -]
70 2 4 6 8 10 x 1.2 14 18 18 20

Sketch (o)

for which yo5 = 1. The shock wave is a portion of the parabola
(Uoko)Z/3 &2y
which becomes, after evaluating T4 Ifrom equation (h9),

x2 = 0,493y

From equation (50), the calculation to determine change in deflection
angle at the shock wave is as follows

tan{Ay = Ag) = 0.111 ,  Np-Ag = 6.3°

In order to calculate the local Mach number Mg &t the end of the expan-
sion region of this flow, we use the relation ?51) which, for Mg = 1,
gives

Mo = [L+(7+ l)cpxa]’uz

and, from equation (33b),
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With the value of My thus determined, sketch {n) can be entered, and
it is found that the angle XA, -Ag Just determined lies above the shock-
attachment limit, so that the shock wave is attached to the wall.,

In connection with the wall shape and shock wave of sketch (o), it
should be mentioned that the analysis leads to the so-called "strong
shock"” and that it is not possible, in this two-dimensional case, to
derive a shape characterized by a "weak shock." This result can be found
by a consideration of the perturbation shock relation {11). The region
of the shock polar that lies between the value of q)xb corresponding to

maximm deflection angle and cpxb = 0 corresponds to the weak shock
region, It 1s easy to determine that in this reglion

Now, ueing equation (16), it can be shown that this condition corresponds,
in terms of the varisble T, to

2
2

where T, 18 given in equation (49). The parsbola in the xy plene for

which Qg >~ (Pxy/3) therefore lies outside the shock-wave parabola

determined by Tg. Thus, the weak-shock condition cen never be achieved
in this case.

On the supersonic portion of the streamline Just illustrated, pressure
coefficient 1s, from equation (33b)

2
- =__2 (x
= —apx"7+l<3’>

where y 1is the height of the streamline, y = y(x). If the point where
the shock wave intersects the streamline is denoted (xs s¥g) s Dressure
coefficlent on the upstream side is

Cp =- =2 x= (52)

1/ 2
y+1 [Ysé"‘ ——2—(}{54- x"')]
3(y+1)
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-Sr In the subsonic portion of the field,
calculation of pressure 1s not so
simple, but is given by

Cp "—‘-——-—2 fz'("')

(y+1)Y 3y

Cp where y = y(x) is the calculated
height of the subsonic streamline. -
-2 Results of the pressure calculations
on the wall shown in sketch (o) are
given in sketch (p).

It is not possible to combine so
directly the subsonic and supersonic
flows when the other two-dimensional
solution, g(7), is to be used. The
reason 1s that since the condition
for a shock wave is agaln g; = g2,
the simple supersonic-type solution
g1 = 7°/3 1s not applicable since
the subsonlc solution gz 18 always
negetlve and no intersection occurs.
Further application of these results
3+ would involve detalled examinastion of

the more general supersonic solution
Sketch (p) glven by equation (26a).

Axielly Symmetric Flow

Supersonic solution.- A single solution exists 1n the axially sym-~
metric case, corresponding to the value 1/2 for the index n. There are,
of course, still the solutions of supersonic type and of subsonlc type,
as glven in equations (30) and (31). A simple supersonic solution exists
agein, namely, from eguation (31) - -

Fl(T) = —g- 73

The corresponding potentisl and velocity funetions are

1 2 x3
= F = = x
@ TY = 1(7) ’ Y —?_9 Uoka) ¥2

o2 @ 0w s () (53)
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so that certain aspects of this flow are similer to those in the two-

dimensional supersonic case previously consldered.

A definite difference

does exist, however, in the fact thet the two-dimensional streamlines
could be carried to the limit as y approaches zero and resulting in

this case in & Prandtli-Meyer corner flow.
three-dimensionglly since the flow turns inward on itself.

This limiting process fails
Finite values

of streamline radius are therefore required and the flow must be modified
downgtream by & shock wave and a readjustment of the streamlines.

Subsonic golution.- The subsonic solution for the axislly symmetric
trensonic problem depends on the function Fo(T) defined in equation (30Db)

and shown in sketch (f).

Streamlines corresponding to this case can

again be calculated by solving the differential equation

1
oy 2

g:-
ax

[F2(7) + 2! (7)]

By means of the differential equation (28), this can be written

/3
ay - (UoKo) "~ p iz, he
ax Xy 2"%(T) (5ka)
Again, it 1s convenlent to change 20
independent variables from x to T, \\\‘-\_____¥
and the resulting equation is K\\\\\\-_-—-
1]
& - & FEIZ(T) \
T 2(Uoko) Y R4 F (7)) 12
(5i) 7 .
.8F
In this case, there are no station-
ary points on the streamlines. A
few results of calculations are af
shown in sketch (q) (where TFpq
has been taken equal to 1). These
streamlines approach their asymp- o) : b L — ~
totic height from above, as in t?e ° 10 20 , 30. 40 50
two-dimensional case with n = 3/k,
rather than from below, as in the Sketch (q)
two-dimensional case with n = 1/2. 0 5 '-‘Q 15 X 20 25 20
Pressure calculations proceed as - Y T
previously, the formula belng
_4_..
== Fa!(T) G
pWEC) P
(r+1)" %y ol
In sketch (r), the pressure on the
streamline for which y, =1 1is ol

shown.

Sketch (r)
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Combined supersonic and subsgonic solutions.- For the axiaslly sym-
metric problem, it is agsin posaible to use the simplest supersonic
function Fi(7) = (2/9)1® in conjunction with the subsonic solution
Fa(T), as given by equation (30b), to produce & flow in which & shock
wave 1sg imbedded. The condltion for existentde of a shock wave in the
axially symmetric case is, from equetion (11)

<cpya - cpyb>2 = (Ugko) ?xi———ix—b> <q>xa- cpxb>2

where y now denotes the radial coordinate. In terms of the asuxiliary
function F(7), this last condition can he written

(Fy-Fo)(Fy '3~ Fp'®) = 0 (55)

Agaln it cen be shown that the first of these factors leads to a proper
relation of taengential and normal Vvelocities across the shock wave, while
the second does not. The condition is, therefore, that the functions
Fi(7) and Fx{1) be equal at the shock wave. The value of T &t which
this occurs is ' ' ' o

6 (GF % i3
= 20
OREICES (568)

and the shock weve is then given in the physical plane by

2
X2 = [(Uoko)llsTs] ¥ (56b)

To illustrate the sort of body that one gets in this case, consider a
streamline {subsonic) for which Yo = 1.2, end computed on the basis
Fzo = 1/8. The procedure.is the seme as it was previously, namely to
determine the intersection, say (xg,yg), of this streamline with the
parabola {eq. (56b)) representing the shock wave, and to use this point
as a boundary condition for determining the proper solution to the
supersonic streamline differentlal equation

& - 9—(—11—21—%7 @‘)3 (57)
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1.36
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Sketch (s)
The result of such a calculation, with the parameters yo and Fpn taken

as mentioned, gives the figure shown in sketch (8). The angle between
streemlines on the two sides of the shock wave 1s, in this case

Mo -Ag = 5.7°

In this axlally symmetric case one gets by using equation (51) with
Mo = 1:
2 (Xs 2
2
= 1l4+={—
Ha 3 <YS>

and calculation of Mg shows that the shock wave is attached ih this

cage. In contrast to the two-dimensional case treated above, it is found
that in the present axlally symmetric case it is necessary that the shock
wave be of the weak family, because the critical paraboles 1s determined by

/s -4
T4 = 322_1% on(g- F20> < Tgt

where Ty is given in equation (56), 2
and therefore lies inside the shock
wave. Since in both the two-
dimensional case and the present -2

one, the line of demarcation between Cp
strong and weak shocks is digtinet
from the shock wave itself, one
cannot determine configurations
having shock waves that are right
at the point of detachment.

,p -

o

o
o

»

The pressure coefficient on the
streamlines of sketech (s) is shown N

in sketch (%). . Sketeh (t)

-
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Msgs-flow property of subsonic solution with axial symmetry.- ALlL
of the solutions given here were derived by means of formal manipulation
of the transonic differential equation but in the case of the supersonic
solutions f£3(7) = v3/3, g1(7) = v3/3, and Fi(7) = (2/9)}1® it was easy
to identify these results with simple expansions from uniform stream
conditions, It is evident that the latter solutions could have been
derived from any one of several methods of attack since their existence
and nature are intultively so cbvious. The subsonic solutions, on the
other hand, are somewhat more complex and appear to arise rather asrti-
ficially ae a result of abrupt deflections imposed on the streamlines
across the entire plane of flow. In the case of axlal symmetry, however,
the subsonic solution has properties reminiscent of the fundamental solu-
tion identified with the source-sink potential of linearized supersonic
theory. From equations (15) end (16) the perturbation potential end
velocity components can be rewritten as : '

® = ':},_-%/—2- Fz("r) (58)
_ Fz'("l‘) . - _ 1 d
u—q)x=m, V—Qy-‘ma[fwz('ﬂ] (59)

From equations (32), limiting conditions yield:

For Tl
1/ 2 /=2
S | Fao) =~ 12 | S N F_a_q> xtz
(r+1¥e\2 VT enYENE/ e
1
Vz—2y3/2+...
For *>1

- 4,1/3__1_ - 41/3_];_
w %(%20) T2y+... %(9F20) ]c2+...

27 /3 1 27 (am_ 8y1/3
V"“a(3F208) -T—-?B—/E+...=--6—E(if_'20) -ng+..-

It is apparent thet the origin is an essential singularity of the
flow field, the rate of growth of the velocity components being determined
in part by the particular parabols T = const along which one approaches
the origin., Away from the origln and on the lateral axis u 1s zeroc and

4
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v is finite but attenuating (as 1/y3/2) with distance. On the longl-
tudinal exis v is zero and wu is finite but attenuating (as 1/x3)
wlth distence. The flow thus appesrs to flow Into the origin and to
distort the field in the portion of the plane downstream of the Mach
line at x = 0.

Tt remains to calculate the rate of mass flow that is associated
wlth the solution; 1f this rate is constant, the analogy with the source
is more closely estsblished. To this end, consider a cylinder of fixed
radius Y and extending from the plane x = 0 t0 X = . The rate of
flow is then given by the integral :

1

lim pof 2n¥(v] . dx
I > w o y=X

1
- lim 2np, d[TF(;%_(T)] d(Y;jz)

I = o'y

2}
]

Since d(x/YY2) = (74—1)llsdT, the integration is direct and yields

/3 4)1/3

R =-2mp (7+1)7° 1im  1(2) =-2 mp (7 +1)" *(oFz0

1 > b

The rate of mass flow i1s therefore a negative constant independent
of Y and the solution behaves macroscopically like a sink. As seen in
sketch (q), the streamlines of the field are drawn toward the longitudinal
axis, consistent with this concept,

Ames Aeronsutical Leboratory
KNational Advisory Committee for Aeronautics
Moffett Field, Calif., Aug. 16, 1956
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